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Abstract. Accurate ab initio calculations on embedded Cu4O12 square clusters, fragments of the La2CuO4

lattice, confirm a value of the nearest neighbor antiferromagnetic coupling (J = 124 meV) previously
obtained from ab initio calculations on bicentric clusters and in good agreement with experiment. These
calculations predict non negligible antiferromagnetic second-neighbor interaction (J ′ = 6.5 meV) and four-
spin cyclic exchange (K = 14 meV), which may affect the thermodynamic and spectroscopic properties
of these materials. The dependence of the magnetic coupling on local lattice distortions has also been
investigated. Among them the best candidate to induce a spin-phonon effect seems to be the movement
of the Cu atoms, changing the Cu-Cu distance, for which the variation of the nearest neighbor magnetic
coupling with the Cu-O distance is ∆J/∆dCu−O ∼ 1700 cm−1 Å−1.

PACS. 75.30.Et Exchange and superexchange interactions – 74.25.Ha Electronic structure – 74.25.Jb
Magnetic properties

1 Introduction

Fifteen years after the discovery of the high-Tc supercon-
ductivity in cuprates, numerous theoretical and experi-
mental studies pay still attention to these materials and
their parent undoped compounds in an attempt to explain
their electronic properties [1]. Regarding the undoped ma-
terials, the CuO2 layers, where superconductivity takes
place after doping, can be seen as two-dimensional spin
lattices, where each Cu atom bears an unpaired electron,
which is antiferromagnetically coupled with the nearest-
neighbors(NN). The value of this NN coupling has been
estimated from Raman scattering 128± 6 meV [2,3] and
neutron diffraction experiments 134 ± 5 meV [4–6], as-
suming a simple Heisenberg Hamiltonian, where only NN
interactions are considered:

H = J
∑
〈ij〉,NN

SiSj (J > 0) (1)

where 〈ij〉 represents a pair of NN sites. However, this
simple model does not satisfactorily reproduce the whole
Raman spectra of undoped cuprates [7–12], and extended-
Heisenberg Hamiltonians have been proposed [13–16].
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The sophistications introduce some of the following ef-
fects:

– spin-phonon interactions,
– next-nearest neighbor (NNN) magnetic couplings, J ′,

and
– four-spin cyclic (4SC) exchange, K.

The spin-phonon coupling, i.e. the dependence of the
magnetic coupling on the vibrational distortions of the
lattice, has been recently invoked as possibly responsible
for the asymmetry of the B1g peak on the Raman spectra
of cuprates [13,17–20]. The spin-phonon interaction mod-
ifies the magnetic coupling J through the dependence of
the hopping integral (tpd) and the charge transfer energy
(∆CT ) on the Cu-O distance [21–23]. A maximum contri-
bution of ± 54 meV to the NN magnetic coupling com-
ing from spin-phonon interactions has been suggested [13],
based on the linear dependence of J on the Cu-O dis-
tance observed in the M2CuO4 family [23] and the spin-
wave approximation. However, the calculations explicitly
including the phonon-spin interaction, using an adiabatic
approximation for the phonons, [17], require unrealistic
values of disorder to reproduce the width and asymmetry
of the B1g peak. It seems necessary to introduce additional
terms (as NNN coupling and 4SC exchange) to reproduce
the structure of the Raman spectra [13].

The existence of the NNN magnetic coupling J ′ and
the 4SC exchange K can be established from a one-band
Hubbard model [24–27]. The NNN interactions may be ei-
ther a second order effect in form of ∼ t′2/U , where t′ is
a second-neighbor hopping integral and U is the classical
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on-site Coulomb repulsion, or fourth-order effects scaling
as ∼ t4/U3, where t is the NN hopping integral. The 4SC
exchange is a fourth-order term in the Hubbard model,
involving circulation of the electrons around the square
and scaling as λt4/U3, where λ is a large numerical factor
(λ = 40 [24,25] or λ = 80 [26,27], depending on the for-
mal writing of the operator), as shown in early works in
quantum chemistry [24,25] and solid state physics [26,27].
Recent experiments have shown that four-spin cyclic ex-
change exists in the two dimensional solid 3He [28–30], in
the 2D Wigner solid of electrons formed in a Si inversion
layer [31] and in the bcc 3He [32–34].

As was previously shown, oxygen atoms play a crucial
role in the spin exchange between Cu atoms in these ma-
terials [21,22,35,36]. In this context, the one-band model
is not sufficient to bear all the physics of such materials as
shown, for instance, by Jefferson et al. [37,38] and it can-
not fix the ratios J ′/J and K/J . The multiple parameters
contained in an extended Heisenberg Hamiltonian and the
spin-phonon coupling cannot be univocally fixed from the
collective properties of the material and, as far as possible,
a prejudiceless evaluation of them will be welcome.

In the recent past, ab initio quantum chemical calcula-
tions, using large basis sets and accurate treatment of the
electronic correlation by means of extensive configuration
interaction (CI) expansions of the wave functions, have
been performed on bicentric clusters (Cu2O7 and Cu2O11)
[21,22,39,40], properly embedded in the Madelung field
of the infinite crystal, crucial to correctly represent the
electronic structure of these systems [23]. These calcu-
lations, in which the metal and oxygen atoms are ex-
plicitly treated in extended basis sets, incorporate all ef-
fects of the one-band and two-band models, including the
Anderson [41] and Goodenough [42] mechanisms and a
lot of dynamical correlation effects. Being variational
these calculations avoid the divergent behavior of the
perturbative development [38]. They provide satisfactory
values of J (138 meV) [21,22,39,40] and of the first-
neighbor hopping integral for the hole-doped system (t =
−0.55−0.57 eV) [21,22]. In both cases, the evaluation of
the effective interaction goes through the calculation of
the spectrum of the dimer.

An extension of this strategy is proposed here which
provides an evaluation of J ′ and K from the calculation of
the spectrum of four-Cu sites square embedded clusters.
By the way, the transferability of the J value from the
two-center to the four-center clusters will be verified. To
estimate the spin-phonon coupling, the bimetallic clus-
ter Cu2O7 has been used, calculating the dependence of
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Fig. 1. Fragment of the La2CuO4 lattice, containing the clus-
ter Cu4O12, which atoms are explicitly treated in the ab initio
calculations, and its first-shell of neighbor atoms, where pseu-
dopotentials have been placed to avoid an artificial polarization
of the electronic density of the terminal oxygen atoms.

the singlet-triplet separation on different geometry distor-
tions.

2 Next-nearest neighbor coupling
and four-spin cyclic exchange

2.1 Strategy to extract the effective interactions

A square cluster containing four Cu atoms and their near-
est twelve in-plane oxygen atoms (a plaquette) will be
used to extract these parameters (Fig. 1). Each Cu atom
contains an unpaired electron in an in-plane dx2−y2-type
orbital. For such frame, the four center-four spin model
space is spanned by six neutral determinants. If one calls
a, b, c and d the magnetic orbitals, centered in each Cu
atom, there are two kinds of determinants with Sz = 0,
the fully spin-alternant determinants |ab̄cd̄| and |ābc̄d| and
four partially-frustrated determinants |abc̄d̄|, |āb̄cd|, |ab̄c̄d|
and |ābcd̄|, where the common core is omitted. The effec-
tive Hamiltonian spanned by such a model space can, in
full generality, be written as:
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Fig. 2. Spectrum of the plaquette, corresponding to an oc-
cupation of one-electron per Cu site, written in the basis of
the parameters of the effective Hamiltonian. On the right, the
symmetry of the different states in the D4h group has been
included.

where the zero of energy is that of the ferromagnetic quin-
tet state and the equivalences between different elements
are due to symmetric reasons, imposed by the structure of
the plaquette. For instance, the elements 〈ab̄cd̄|Heff |abc̄d̄〉
represents the exchange of the spins in b and c. In the pla-
quette, this interaction must be equivalent to the exchange
between a and d, that is, the element 〈ab̄cd̄|Heff |āb̄cd〉,
and different from the 〈āb̄cd|Heff |ab̄c̄d〉 element, which ex-
changes the spins on the diagonals.

The six eigenstates of this matrix belong to differ-
ent spin-space symmetry irreducible representations. The
spectrum can be easily written from the basic parame-
ters as shown in Figure 2. There are only four energy-
differences, and then the four parameters can be univo-
cally defined. If we now perform an accurate calculation
of the six lowest eigenstates of this system, employing the
best ab initio techniques, we will obtain four level spac-
ings which enable us to determine the four desired effective
interactions.

2.2 Ab initio calculations

As was previously mentioned, to estimate the NNN and
4SC interactions a square cluster containing four Cu
atoms and the first twelve in-plane oxygen atoms has been
considered, where all the atoms are treated explicitly. The
most internal electrons of the Cu atoms (1s22s2p63s2)
have been replaced by an effective core potential and
the rest of the electrons (3p6d9 for Cu+2 and 1s22s2p6

for O−2, a total of 156 electrons) are explicitly treated
in the basis sets of triple-zeta quality (double-zeta for
O atoms) [43]. In order to model the infinite lattice, a
well-established approach has been used, which consists in
replacing the first-shell of neighbors (in-plane and out-of-
plane) by pseudopotentials, which incorporate both elec-
trostatic and exclusion effects of these ions, and in con-
sidering the Madelung field of the remote atoms of the
periodic lattice by means of point charges, which values
are chosen according to Evjen’s technique [44].

A restricted open-shell self-consistent field calcula-
tion (ROHF) for the quintet state has been carried out,
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Fig. 3. Linear combinations of the 3dx2 − y2-type of orbitals,
containing non-negligible delocalization tails on the neighbor
oxygen atoms. These orbitals correspond to the A1g (a), Eu(b
and c) and B1g irreducible representation of symmetry in D4h

group.

which determines the four magnetic orbitals (a, b, c, d
or their symmetry-adapted combinations corresponding to
the irreducible representations a1g, eu and b1g in the D4h

symmetry group) (Fig. 3). These four orbitals define a
valence-space with one-electron and one-orbital per site,
in one-to-one correspondence with the model spaces of the
Heisenberg Hamiltonian or the parent one-band Hubbard
Hamiltonian.

The diagonalization of the valence CI matrix (CASCI),
that is, a matrix with dimension 36 in the delocalized basis
set, gives a value of −28 meV for the NN antiferromag-
netic coupling, which is very far from the experimental
estimation. This very limited CI only contains the Ander-
son mechanism in the bare one-band model. This level of
description misses two important phenomena, namely in-
termediate charge-transfer from the oxygen atoms to the
Cu atoms and the dynamical polarization effects of the
internal electrons and the surrounding atoms, which react
to the fluctuation of the field created by the active elec-
trons. The treatment of these effects requires much larger
CI expansions.

In order to take into account the first effect, namely
the hopping between oxygen and Cu atoms, it is cru-
cial to identify the doubly-occupied orbitals of the oxy-
gen atoms which contribute to this mechanism. They are
not necessarily canonical orbitals, i.e. eigenstates of the
Fock operator. The most-relevant ligand-centered orbitals
will be obtained as energy-difference dedicated molecular
orbitals [45]. These orbitals have been obtained as follows:

1.- From the four-electrons in four-orbital active space,
a CI calculation has been performed, limited to the
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Fig. 4. Most-implicated dedicated molecular orbitals centered
in the ligands. These orbitals correspond to the A1g (a), Eu(b
and c) and B1g irreducible representation of symmetry in D4h

group.

single excitations on the top of all the valence space
determinants.

2.- The density matrices, RS and RQ, for the lowest
singlet and quintet states have been calculated. The
excitation-energy dedicated MOs are the eigenvectors
of the difference of the density matrices RS − RQ, re-
stricted to the nearly doubly occupied MOs. The eigen-
values of this matrix difference, called ‘implication
numbers’, give a measure of the participation of the
corresponding orbital to the energy difference, hence
to the antiferromangetic mechanism responsible for the
lowering of the energy of the singlet state. The MOs
of largest implication numbers are essentially spanned
by 2p atomic orbitals of the bridging oxygen atoms, as
shown in Figure 4.

3.- Now these four orbitals will be added to the magnetic
ones to define an enlarged valence space involving
12 electrons in 8 MOs, corresponding to a two-band
Hubbard model since it includes both the 3d-like
orbital of the Cu atoms and 2p orbitals of the bridging

|ab̄cd̄| |ābc̄d| |abc̄d̄| |āb̄cd| |ab̄c̄d| |ābcd̄|
−2J K/2 J/2−K/8 J/2−K/8 J/2−K/8 J/2−K/8

−2J J/2−K/8 J/2−K/8 J/2−K/8 J/2−K/8
−J − J ′ 0 J ′/2 +K/8 J ′/2 +K/8

−J − J ′ J ′/2 +K/8 J ′/2 +K/8
−J − J ′ 0

−J − J ′

oxygen directed along the Cu-O bonds, with optimized
delocalization tails on the external oxygen atoms. The
effect of the dynamical polarization will be taken into
account by performing all the single excitations on the
top of this enlarged valence space. The resulting CI
vectors are expanded on a large space (∼ 5× 106 de-
terminants).

When applied to the dimeric cluster Cu2O7 the same
strategy provides a value of J = 128 meV, in good agree-
ment with the experimental evaluations and our previ-
ous CI estimates 138 meV [21,22], which involved d basis
functions on the bridging oxygen atoms (which had to be
deleted here to make feasible the calculations on the pla-
quette).

The identification of the ab initio calculated spectrum
of the tetrameric clusters with the expected spacings of
Figure 2 leads to the following values of the effective
interactions:

h = 60.22 meV; h′ = 5.01 meV

g4 = 7.00 meV; g′4 = 0.49 meV.

From these values it is possible to establish the
interactions as written in the usual spin formulation of
the four-body operator [13–15]:

H =
∑
〈ij〉NN

J(SiSj −
1
4

) +
∑

〈ij〉NNN
J ′(SiSj −

1
4

)

+K
∑
〈ijkl〉

[(SiSj)(SkSl) + (SiSl)(SjSk)

− (SiSk)(SjSl)−
1
16

]

where the higher multiplet energy is zero, J corresponds to
the NN interaction, J ′ to the NNN coupling and K to the
four-spin cyclic exchange. Notice that the last term pro-
duces the cyclic permutation of the four spins on the pla-
quette plus ordinary two-spins exchanges of all the pairs
of spins of the plaquette including those on the diagonals.
Written in the basis of the six Sz = 0 determinants of
the abcd configuration, this Hamiltonian has the following
form:
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Identifying the two matrices and omitting the negligible
g′4 term, one obtains:

K = 2g4 → K = 14 meV
J = 2h+ K

4 → J = 124 meV
J ′ = 2h′ − K

4 → J ′ = 6.5 meV.

The value of the NN antiferromagnetic coupling (J) is
in good agreement with both the previous estimation on
the dimer (J = 128 meV) and also with the experimental
evaluations (128±6 meV [2,3] and 134±5 meV [4–6]). Our
estimate of the NNN magnetic coupling (J ′ = 6.5 meV)
is in accord with the limit of |J ′| ≤ 9 meV, proposed for
this compound from Raman experiments [6]. Concerning
the four-spin cyclic exchange, experimental evaluations
are not available and it is only possible to compare with
the K/J ratios used in some recent numerical simulations
of the absorption spectrum. The here-presented values of
K and J give K/J ∼ 0.11, which is lower than the value
of 0.25 assumed by Honda et al. [15] and than the value of
0.30 taken by Lorenzana et al. [14] (from an earlier sugges-
tion by Schmidt and Kuramoto [47]) but larger than the
critical value, (K/J)c = 0.05 ± 0.04, estimated by Sakai
and Hasegawa [16] for the appearance of a magnetization
plateau at half the saturation value in the S = 1

2 antiferro-
magnetic spin ladders. The K value here-proposed is also
in accord with the value used by Matsuda et al. [46] (about
10% of the main NN exchange) to fit the experimental
data of the w − Q dispersion of the two-leg spin ladders
in the La6Ca8Cu24O41 system. The ratio of the NNN and
NN interactions is J ′/J = 0.051, somewhat larger than
the value accepted by Lorenzana et al. (J ′/J = 0.04) [14].

3 Spin-phonon interactions

Additional calculations have been performed to evaluate
the dependence of the magnetic coupling constant on lo-
cal geometrical distortions of the lattice. This evaluation
proceeds through ab initio calculations on bimetallic clus-
ters using the same strategy as in the preceding section
(same basis set, same kind of optimization of the molec-
ular orbitals and same type of Configuration Interaction
calculations).

Five different local distortions have been considered,
as shown in Figure 5. Table 1 gives their corresponding
force constants (f), associated frequency and the deriva-
tive ∆J/∆dCu−O. Concerning strongly localized move-
ments, these frequencies are different from the real fre-
quencies of the lattice, but offer an insight on the softness
of the different motions. Among the distortions, the move-
ment of the bridging oxygen atom along the Cu-Cu bond,
lengthening one Cu-O bond and shortening the other one
(mode 2), has a small force constant (ω ∼ 750 cm−1),
but does not affect significantly the J value. The move-
ments out of the Cu-Cu axis, either in-plane or along the
c axis (modes 3, 4 and 5), induce strong changes on J
value but the force constant and frequencies are large
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Fig. 5. Different local distortions in the Cu2O7 cluster. Modes
1, 2 and 3 correspond to the distortions in the CuO2 plane.
Mode 1 represents the symmetric stretching of the Cu-Obridge

bond. The Cu atoms have been symmetrically displaced along
the y-axis. Modes 2 and 3 represent the displacement of the
bridging oxygen atom along the y and the x axis, respectively.
Mode 4 corresponds to the movement of the central oxygen
atom out of the xy plane. Mode 5 represents a collective dis-
tortion, where the four oxygen atoms, coordinated to one of
the Cu atoms, go out of the plane.

Table 1. Force constants (f), frequencies of vibration (ω) and
variation of J with the Cu-O distance (∆J/∆dCu−O) of differ-
ent local distortions (see Fig. 5) in La2CuO4.

mode f(cm−1 Å−2) ω(cm−1) ∆J/∆dCu−O

(cm−1 Å−1)

mode 1 6.53 × 105 833 −1693

mode 2 2.78 × 105 763 ∼ 0

mode 3 8.69 × 105(*) 2549 −1246

mode 4 6.76 × 105(*) 2246 −1213

mode 5 2.45 × 106(*) 8568 −2098

(*) f in cm−1 rad−2.

and, then these distortions do not seem to be responsi-
ble for the dispersion of J . The movement shortening (or
lengthening) the Cu-Cu bonds (mode 1) has both a signif-
icant impact on J (∆J/∆dCu−O = 1700 cm−1 Å−1) and
a low frequency (ω ∼ 800 cm−1). These values should
be compared with those assumed in a recent work [13],
which takes ∆J/∆dCu−O = 4350 cm−1 Å−1 and invokes
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the experimental frequencies 550 and 690 cm−1. Our
roughly calculated vibrational frequency is on line with
the experimental one but the calculated dependence of J
on the Cu-O distance is half smaller that the value previ-
ously proposed [13].

4 Conclusions

This work has evaluated the amplitudes of the differ-
ent interactions generally invoked to explain the spectral
features of CuO2 layers which do not fit with the sim-
ple Heisenberg Hamiltonian restricted to nearest neighbor
coupling. Neither the spin-phonon coupling nor the next-
nearest neighbor magnetic interactions nor the four-body
cyclic effects are negligible, they appear to be of the order
of magnitude sometimes assumed in numerical simulations
of the collective effects. The here-presented ab initio cal-
culations are free from the simplifications of a one-band
or even of a two-band model Hamiltonian. We believe
that the so-obtained values of the generalized distance-
dependent Heisenberg Hamiltonian are reliable enough to
deserve to be used in the evaluation of the collective prop-
erties of the material. The here obtained J ′/J and K/J
ratios remain certainly valid for similar CuO2 layers, in the
absence of large structural distortions as those observed
in YBa2Cu3O7 compound.
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29. M. Roger, C. Bäuerle, Yu.M. Bunkov, A.-S. Chen, H.

Godfrin, Phys. Rev. Lett. 80, 1308 (1998).
30. G. Misguich, B. Bernu, C. Lhuillier, C. Waldtmann, Phys.

Rev. Lett. 81, 1098 (1998).
31. T. Okamoto, S. Kawaji, Phys. Rev. B. 57, 9097 (1998).
32. D.D. Osheroff, J. Low Temp. Phys. 87, 297 (1992).
33. M. Roger, J.H. Hetherington, J.M. Delrieu, Rev. Mod.

Phys. 55, 1 (1983).
34. M.C. Cross, D.S. Fisher, Rev. Mod. Phys. 57, 881 (1985).
35. R.L. Martin, in Clusters Models for Surface and Bulk Phe-

nomena, edited by G. Pacchioni, P. Bagus (Plenum, New
York, 1992); R.L. Martin, P.J. Hay, J. Chem. Phys. 98,
8680 (1993); R.L. Martin, ibid. 98, 8691 (1993); Phys. Rev.
B 53, 15501 (1996); ibid. 54, R9647 (1996).

36. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett.
55, 418 (1985).

37. J.H. Jefferson, H. Eskes, L.F. Feiner, Phys. Rev. B 45,
7959 (1992).

38. H. Eskes, J.H. Jefferson, Phys. Rev. B 48, 9788 (1993).
39. I. de P.R. Moreira, F. Illas, C.J. Calzado, J.F. Sanz, J.P.

Malrieu, N. Ben Amor, D. Maynau, Phys. Rev. B 59,
R6593 (1999).

40. A.B. Van Oosten, R. Broer, W.C. Nieuwpoort, Chem.
Phys. Lett. 257, 207 (1996).



C.J. Calzado and J.-P. Malrieu: Ab initio determination of an extended Heisenberg Hamiltonian in CuO2 layers 381

41. P.W. Anderson, Phys. Rev. 115, 2 (1959); 79, 350 (1950).
P.W. Anderson, Solid State Physics, edited by F. Seitz,
D. Turnbull (Academic Press, New York, 1963), Vol. 14,
p. 99.

42. W. Geertsma, Ph.D. thesis, University of Groningen, the
Netherlands, 1989; Physica B 164, 241 (1990).

43. For metallic atoms, the ab initio relativistic core model po-
tential proposed by Barandiarán (Z. Barandiarán, L. Seijo,
Can. J. Chem. 70, 409 (1992)) has been used, where the
Cu valence electrons are described by a (9s6p6d)/[3s3p4d]
basis set. For the oxygen atoms, an all electron basis set
(10s5p) contracted to [3s2p] is employed (T.H. Dunning
Jr., J. Chem. Phys. 53, 2823 (1970); T.H. Dunning Jr.,
P.J. Hay, in Methods of electronic structure theory, edited
by H.F. Schaefer III, Vol. 2 (Plenum Press, 1977)).

44. H.M. Evjen, Phys. Rev 39, 675 (1932).
45. C.J. Calzado, J.P. Malrieu, J. Cabrero, R. Caballol, J.

Phys. Chem. A 104, 11636 (2000).
46. M. Matsuda, K. Katsumata, R.S. Eccleston, S. Brehmer,

H.-J. Mikeska, J. Appl. Phys. 87, 6271 (2000).
47. H. Schmidt, Y. Kuramoto, Physica C (Amsterdam) 167,

263 (1990).
48. MOLCAS version 4. K. Andersson, M.R.A. Blomberg,

M.P. Fülscher, G. Karlström, R. Lindh, P.A. Malmqvist,
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